
GraphS: A Graph Processing Accelerator Leveraging
SOT-MRAM

Shaahin Angizi∗, Jiao Sun†, Wei Zhang† and Deliang Fan∗
∗Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816

†Department of Computer Science, University of Central Florida

Email: angizi@knights.ucf.edu, dfan@ucf.edu

Abstract—In this work, we present GraphS architecture,
which transforms current Spin Orbit Torque Magnetic Random
Access Memory (SOT-MRAM) to massively parallel computa-
tional units capable of accelerating graph processing applications.
GraphS can be leveraged to greatly reduce energy consumption
dealing with underlying adjacency matrix computations, eliminat-
ing unnecessary off-chip accesses and providing ultra-high inter-
nal bandwidth. The device-to-architecture co-simulation for three
social network data-sets indicate roughly 3.6× higher energy-
efficiency and 5.3× speed-up over recent ReRAM crossbar. It
achieves ∼4× higher energy-efficiency and 5.1× speed-up over
recent processing-in-DRAM acceleration methods.

I. INTRODUCTION

Achieving high bandwidth of graph processing in Von-
Neumann platforms suffers from different challenges [1], such
as long memory access latency, significant congestion at I/Os,
huge data communication energy and large leakage power con-
sumption for storing graph parameters in the volatile memory
that lead to over 90% bandwidth degradation on CPU-DRAM
hierarchy [2]. In the last two decades, Processing-in-Memory
(PIM), as a potentially viable way to solve the memory wall
challenge, have been put forward [3], [4]. The key idea of PIM
is to embed or realize logic units within memory to process
data by leveraging the inherent parallel computing mechanism
and exploiting large internal memory bandwidth. It could lead
to remarkable savings in off-chip data communication energy
and latency. PIM architectures ideally should be capable of
performing bulk bit-wise operations which is needed in many
graph processing applications [5]. However, this has been
limited to basic logic operations such as AND, OR and XOR
so far [5], [6], which are not necessarily applicable to a wide
variety of tasks except by imposing multi-cycle operations to
realize specific functions such as addition [4], [7].

The proposals for exploiting SRAM-based [8], [9] PIM
architectures can be found in recent literature. However, PIM
in context of main memory (DRAM- [3], [4], [10]) has drawn
much more attention mainly due to larger memory capacities
and off-chip data transfer reduction as opposed to SRAM-
based PIM. However, existing DRAM-based PIM architectures
have major shortcomings, e.g., high refresh/leakage power,
multi-cycle logic operations, operand data overwritten, operand
locality, etc. Ambit [4] shows DRAM-based graph processing
acceleration by realizing a majority function between every
three rows and so can implement 2-input logic after sav-
ing operand data in reserved rows to avoid data-overwritten.
GraphH [1] and Graphpim [11] present new designs based on
Hybrid Memory Cube (HMC) to accelerate large-scale graph
processing tasks at architectural level.

The PIM architectures have recently become even more
popular when integrating with emerging Non-Volatile Memory
(NVM) technologies, such as Resistive RAM (ReRAM) [6].
ReRAM offers more packing density (∼ 2−4×) than DRAM,

and hence appears to be competitive alternatives to DRAM.
However, it still suffers from slower and more power hungry
writing operations than DRAM [12]. Spin-Orbit Torque Mag-
netic Random Access Memory (SOT-MRAM) [13] technology
is other promising high performance candidate for both last
level cache and main memory, due to its low switching
energy, non-volatility, superior endurance, excellent retention
time, high integration density and compatibility with CMOS
technology. Meanwhile, MRAM technology is undergoing the
process of commercialization [14]. Thus, in-memory graph
processing accelerators in the context of different NVMs,
without sacrificing memory capacity, are of growing inter-
est on graph processing tasks. For instance, Pinatubo [5]
presents a general PIM architecture for NVM-based graph
processing, where each sub-array is capable of performing
bulk AND/OR/XOR functions thanks to modified decoder
and memory sense amplifiers. MPIM [6] consists of multiple
ReRAM crossbars and provides the same bit-wise operations
with modified analog sense amplifiers.

From graph processing algorithm perspective, network
topology analysis can help us better understand the intricate
connectivity of complex networks in practical problems. For
instance, degree centrality is often used to measure the im-
portance of a vertex. In social networks, people with more
connections tend to have more significant influence in the
community. The matching index is another basic topology
parameter characterizes the similarity between two vertices in
a network. It measures the ratio of common neighbors for pair
of vertices. Evaluation of these network properties plays an
essential part in potential applications, such as social network
analysis and traffic flow control. The main goal of this paper
is to develop a non-volatile, parallel and energy-efficient PIM
architecture that could simultaneously work as memory and
realize a high performance accelerator for such data-intensive
graph processing applications. The main contributions of this
paper are summarized as follows: (1) We propose a novel
SOT-MRAM in-memory accelerator, GraphS, based on set of
novel microarchitectural and circuit-level schemes that position
GraphS as a massive data-parallel computational unit with
negligible area overhead. (2) We provide case studies of
how important graph processing workloads can be partitioned
mapped to our architecture and how they can benefit from it.
(3) We evaluate our proposed scheme using a variety of real-
world social network graph data compared with other state-
of-the-art acceleration solutions i.e. DRAM, HMC, ReRAM,
STT-MRAM, and GPU.

II. GRAPHS ARCHITECTURE

A. Computational sub-arrays

GraphS is designed to be an independent high-performance
and energy-efficient accelerator based on main memory ar-
chitecture. The main memory chip is basically divided into

Vsense

Sum

EN
M

EN
N

O
R

3

EN
O

R
2

EN
M

AJ

EN
AN

D
3

EN
AN

D
2

(ENM , ENOR3 , ENOR2 , ENMAJ , ENAND3 , ENAND2)

A A

B

AND2/NAND2
OR2/NOR2
XOR2/XNOR2

A A

B

C

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M3

SL3
RWL3

T1 T2

Carry

AND3/NAND3
OR3/NOR3
XOR3/XNOR3
Maj3/Min3
Addition

GRB

GWL GBL

Ctrl

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl

LRB

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl

LRB

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl

LRB

GGGGBBBBBBBLLL

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl
DPU

LRB

GRD

Fig. 1. (a) The GraphS mat organization, (b) Block level scheme of computational sub-array and SOT-MRAM realization of 2-input and 3-input in-memory
logic methods, (c) Reconfigurable SA.

multiple Banks. Banks within the same chip typically share
I/O, buffer and banks in different chips working in a lock-
step manner. Each bank consists of multiple memory matrices
(mats). The general mat organization of GraphS is shown in
Fig. 1a. Each mat consists of multiple computational memory
sub-arrays connected to a Global Row Decoder (GRD) and a
shared Global Row Buffer (GRB). According to the application
type and physical address of operands within memory, GraphS
Controller (Ctrl) is able to configure the sub-arrays to perform
data-parallel inter- and intra-sub-array computations. Every
two sub-arrays share a Local Row Buffer (LRB) and there
is a Digital Processing Unit (DPU) in each mat to further
process the data (if necessary) in specific applications as will
be discussed later.

Fig. 1b depicts the presented PIM sub-array architecture
based on SOT-MRAM. This architecture mainly consists of
Write Driver (WD), Memory Row Decoder (MRD), Mem-
ory Column Decoder (MCD), reconfigurable Sense Amplifier
(SA), and can be adjusted by Ctrl unit to work in dual mode
that perform both memory write/read and bit-line comput-
ing (using two distinct methods). SOT-MRAM device is a
composite structure of spin Hall metal (SHM) and Magnetic
Tunnel Junction (MTJ) [13]. The resistance of MTJ with
parallel magnetization in both magnetic layers (data-‘0’) is
lower than that of MTJ with anti-parallel magnetization (data-
‘1’). Each SOT-MRAM cell located in computational sub-
arrays is associated with the Write Word Line (WWL), Read
Word Line (RWL), Write Bit Line (WBL), Read Bit Line
(RBL), and Source Line (SL) to perform operations based on
reconfigurability of memory SAs.

The key idea to perform memory read and bit-line com-
puting in GraphS is to choose different thresholds (references)
when sensing the selected memory cell(s). The proposed
reconfigurable SA, as depicted in Fig. 1c, consists of three
sub-SAs and totally six reference-resistance branches that can
be selected by enable bits (ENM , ENOR3, ENOR2, ENMAJ ,
ENAND3, ENAND2) by the sub-array’s Ctrl to realize the
memory and computation schemes as tabulated in Table I. Such
reconfigurable SA could implement memory read and one-
threshold based logic functions only by activating one enable
at a time e.g. by setting ENAND2 to ‘1’, 2-input AND/NAND
logic can be readily implemented between operands located
in the same bit-line. Meanwhile, by activating two or three

enables at a time, two or three logic functions can be simul-
taneously implemented and further used to generate complex
logic functions like XOR3/XNOR3, as explained accordingly.

TABLE I. CONFIG. OF ENABLE BITS FOR DIFFERENT FUNCTIONS.

Ops. read
OR2/
NOR2

AND2/
NAND2

MAJ/
MIN

OR3/
NOR3

AND3/
NAND3

Add/
XOR3/XNOR3
XOR2/XNOR2

ENM 1 0 0 0 0 0 0

ENOR2 0 1 0 0 0 0 0

ENAND2 0 0 1 0 0 0 0

ENOR3 0 0 0 0 1 0 1

ENAND3 0 0 0 0 0 1 1

ENMAJ 0 0 0 1 0 0 1

Memory Mode: To write a bit in any of the SOT-MRAM
cells, e.g. in the cell of 1st row and 1st column, write
current should be injected through the heavy metal substrate
of SOT-MRAM. To activate this write current path, WWL1 is
activated by MRD and SL1 is grounded, while all the other
lines are kept floating. Now, in order to write ‘1’ (/‘0’), the
WD (V1) connected to WBL1 is set to positive (/negative)
write voltage. This allows sufficient charge current flows from
V1 to ground (/ground to V1), leading to MTJ resistance
in High-RAP (/Low-RP). For typical memory read, a read
current flows from the selected SOT-MRAM cell to ground,
generating a sense voltage (Vsense) at the input of SA, which is
compared with memory mode reference voltage activated by
ENM (Vsense,P<Vref,M<Vsense,AP). Now, if the path resistance
is higher (/lower) than RM (memory reference resistance),
i.e. RAP (/RP), then the SA produces High (/Low) voltage
indicating logic ‘1’ (/‘0’). The idea of voltage comparison
for memory read is shown in Fig. 2a. Based on the memory
mode, we develop Fast Row Copy (FRC) mechanism that
needs a consecutive memory read and write operations. In
the first half-cycle, the source row is activated by sub-array’s
MRD and readout to LRB; in the second half-cycle, the
data stored in buffer is written back to the destination row.
It is noteworthy that FRC can be readily used in mat and
bank levels considering inter-component’s buffer (GRB) to
accelerate copy operation in GraphS’s sub-components.

Bit-line Computing Mode: The computational sub-array
of GraphS is designed to perform bulk bit-wise in-memory
logic operations between two or three operands located in
the same bit-line. In the 2-input in-memory logic method
(IML2x), every two bits stored in the identical column can be
selected and sensed simultaneously employing the MRD [5],
as depicted in Fig. 1b. Then, the equivalent resistance of such

parallel connected cells and their cascaded access transistors
are compared with a programmable reference by SA. Through
selecting different reference resistances (RAND2, ROR2), the
SA can perform basic 2-input in-memory Boolean functions
(i.e. AND and OR), e.g. to realize AND operation, Rref is
set at the midpoint of RAP //RP (‘1’,‘0’) and RAP //RAP

(‘1’,‘1’). Consider the data organization shown in Fig. 1b
L.H.S., where A and B operands correspond to M1 and M2
memory cells, respectively, 2-input in-memory logic method
generates AB after SA in a single memory cycle. The idea
of voltage comparison between Vsense and Vref for IML2x is
shown on Fig. 2b. It is worth pointing out that only one sub-
SA is used during one-threshold logic operations to reduce the
power consumption of sensing. Owing to the complementary
outputs of sub-SAs, the reconfigurable SA can also provide
2-input NOR, NAND functions.

VP,P VAP,PVAP,AP

ANDOR

VP VAP

Read

Vsense

RM
1

R1
Ise

ns
e

RM
2

R2

SA

RA
ND

2
 o

r

Ire
f

Vref

Vsense

RM
1

R1
Ise

ns
e

SA

RM

Ire
f

Vref

VP,P,P VP,P,AP VAP,AP,AP

MAJ

Vsense

RM
1

R1

Ise
ns

e
RM

2
R2

SA
RM

AJ

Ire
f

VrefRM
3

R3

VP,AP,AP

RO
R2

Fig. 2. The idea of voltage comparison between Vsense and Vref for (a)
memory read, (b) IML2x, (c) IML3x.

In the 3-input in-memory logic method (IML3x), every
three cells located in an identical column can be selected
by MRD and sensed simultaneously to realize 3-input major-
ity/minority functions (Maj/Min) in a single sensing cycle.
Consider the data organization shown in Fig. 1b where A,
B and C operands correspond to M1, M2 and M3 memory
cells, respectively, the computational sub-array can perform
AB + AC + BC Boolean function by setting ENMAJ to
‘1’. As shown in Fig. 2c, to perform MAJ operation, RMAJ

is set at the midpoint of RP //RP //RAP (‘0’,‘0’,‘1’) and
RP //RAP //RAP (‘0’,‘1’,‘1’). In order to validate the varia-
tion tolerance of the sensing circuit, we have performed Monte-
Carlo simulation with 10000 trials. A σ = 2% variation is
added to the Resistance-Area product (RAP), and a σ = 5%
process variation is added on the Tunneling MagnetoResistive
(TMR). The simulation result of sense voltage (Vsense) dis-
tributions in Fig. 3 shows the sense margin for conventional
memory read, two fan-in in-memory logic and 3 fan-ins sense-
based operation. It can be seen that sense margin gradually
reduces when increasing the number of fan-ins (selected SOT-
MRAM cells for computation). To avoid logic failure and
guarantee the SA output’s reliability, we have limited the
number of sensed cells to three. Note that, such sense margin
could be even improved by increasing the sense current,
but by sacrificing the operation’s energy-efficiency. Parallel
computing/read is implemented by using one SA per bit-line.

In addition to the above-mentioned operations, GraphS’s
sub-array can perform addition/subtraction (add/sub) op-
eration quite efficiently. With a careful observation on the
Full-Adder (FA) truth table, we observe that in six out of
eight possible input combinations, Sum output can be directly
obtained by inverted Carry signal. Keep this fact in mind that
FA’s Carry can be resulted from MAJ function, the proposed
reconfigurable SA can implement such Sum output readily

Fig. 3. Monte-Carlo simulation of Vsense distribution for (top) memory read
operation, and bit-line computing (middle) IML2x (down) IML3x.

by MIN (majority-not) function inspired by [15]. As shown
in Fig. 1c, the Sum signal is directly connected to the MIN
output. However, for two extreme cases, i.e. (0,0,0) and (1,1,1),
the MIN signal is disconnected and Sum can be respectively
implemented by NOR3 (T1:ON, T2:OFF → Sum=0) and
NAND3 functions (T1:OFF, T2:ON → Sum=1). This is realized
by adding two pass transistors in the MIN function path. Note
that, considering the fact that Sum output is the XOR3 function,
the proposed reconfigurable SA can also implement 2-input
and 3-input XOR/XNOR functions, without imposing additional
XOR gates like previous works [4], [9]. Now, assume A, B
and C as input operands (in Fig. 1b), IML3x can generate
Sum(/Difference) and Carry(/Borrow) bits in a single cycle.
To the best of our knowledge, the design proposed here is the
first PIM which can directly implement in-memory addition
in a single memory cycle, where for example Ambit [4] and
MPIM [6] impose over 4 cycles.

B. System integration

While GraphS is meant to be an independent high-
performance and energy-efficient accelerator, we need to ex-
pose it to programmers and system-level libraries to utilize
it. From a programmer perspective, GraphS is more of a third
party accelerator that can be connected directly to the memory
bus or through PCI-Express lanes rather than a memory unit,
thus it is integrated similar to that of GPUs. Therefore, a
virtual machine and ISA for general-purpose parallel thread
execution need to be defined similar to PTX [16] for NVIDIA.
Accordingly, the programs are translated at install time to the
GraphS hardware instruction set tabulated in Table II. The
micro and control transfer instructions are not shown here.

TABLE II. THE BASIC INSTRUCTIONS OF GraphS.
opcode operation function

FRC B ← A Copy row A to Row B

IML2x
IML21
IML22

A.B
A+B

AND2/NAND2
OR2/NOR2

IML3x

IML31
IML32
IML33
IML34
IML35
IML36

A.B.C
A+B+C

AB + AC + BC
A⊕ B

A⊕ B ⊕ C
Sum/Carry

AND3/NAND3
OR3/NOR3
MAJ/MIN

XOR2/XNOR2
XOR3/XNOR3
add/sub

The GraphS commands/instructions can be directly
copied/written to a predefined memory-mapped address ranges,
e.g., defined in the memory type range registers (MTRRs), or
programmed through writing to Memory-Mapped I/O regions
that are allocated through a simple device driver to do initial-
ization/cleanup for required software memory structures. Note
that the first approach can potentially bring more performance
gains compared to the later one; accessing GraphS as an I/O
device can incur significant overheads due to interrupts and
page faults (in case of shared memory model). In contrast,

memory-mapped GraphS scheme can cause major contentions
in the memory bus in case the processor is executing memory-
intensive applications simultaneously. We leave choosing the
scheme of integrating GraphS to system architects based on
their workloads and usecases. In both schemes for integrating
GraphS, the commands/instructions that GraphS architecture
accept is similar and based on the ISA.

III. HARDWARE MAPPING

The GraphS’s parallel operations can be readily used to
accelerate a wide variety of graph processing tasks. For the
sake of limited space, we briefly explain two widely-used tasks
so-called degree centrality and matching index.

A. Degree centrality

One of the most important graph processing tasks is
degree centrality. This task deals with massive number of add
operation which basically counts the number of valid links con-
nected to a vertex. Fig. 4 shows an intuitive example of hard-
ware mapping and acceleration of such operation performed
by GraphS for a small graph. Initially, the designated graph
is converted to adjacency matrix and mapped to consecutive
rows of GraphS’s sub-arrays. Now, in the first half-cycle, every
three rows are activated through RWLs sequentially (here, step
(1) and (2)) to perform parallel add operation (IML36) and
generate initial Carry (C) and Sum (S) bits. In the second
half-cycle, the results are written back to the memory reserved
space. Then, next steps ((3) and (4)) only deal with multi-bit
addition of resultant data starting bit-by-bit from the LSBs of
the two words continuing towards MSBs. There are 2 cycles
for every bit-position computation. In the first half-cycle of
(3), 2 RWLs (accessing to LSBs of 6 elements) and one RWL
(accessing the reserved row initialized by zero) are enabled
to generate the sum and carry. The SAs use these 3 words
to generate sum and carry employing IML36. During second
half-cycle, two WWLs are activated to save back the sum and
carry bits. This process continues to MSB and concluded after
2 × m cycles, where m is number of bits in elements. At
the end the degree of each vertex is stored in memory (e.g. 4
determines the degree of vertex 1).

Fig. 4. GraphS’s mapping and acceleration for add-based graph processing
operations. Here we take degree centrality computation as an example.

Fig. 5. GraphS’s mapping and acceleration for finding matching index.

B. Matching index

The matching index Mi,j quantifies the “similarity” be-
tween two vertices based on the number of common neighbors

shared by vertices as (
∑

common neighbors∑
total number of neighbors

). The main task

here is to find the common and total number of neighbors
which can be carried out and accelerated by GraphS. Fig. 5
provides a straightforward example to elucidate the mapping
and acceleration method of GraphS. Initially, the sample four-
vertex network is converted to adjacency matrix and stored
in 4 consecutive rows of sub-array. To find the common
neighbors of two particular vertices (e.g. V1, V2), GraphS
performs parallel AND2 (IML21) on the rows and SA’s outputs
determine the matches (here, V4). In addition, the total number
of neighbors is found by performing OR2 (IML22) operation
on the same rows. Then, GraphS’s add operation can readily
process the summation operation as explained earlier. After-
wards, DPU is utilized to perform the division operation to
generate corresponding index matrix.

C. Data partitioning and allocation
Real world graph consists of millions of vertices and edges

that need to be processed. To efficiently map such graphs into
GraphS architecture, graph partitioning methods are needed.
Here, we adopt interval-block partitioning method to balance
workloads of each GraphS’s chip and maximize parallelism.
We use hash-based method [1] to split the vertices into M
intervals and then divide edges into M2 blocks as shown
in Fig. 6. Now each block is allocated a specific chip and
accordingly mapped to its sub-arrays. Considering an N -vertex
sub-graph that needs to be mapped to a GraphS chip with Ns

activated sub-arrays with the size of x×y, each sub-array can
process n vertices (n ≤ f |n ∈ N, f = min(x, y)). Therefore,
the number of sub-arrays for processing an N -vertex sub-graph

can be formulated as, Ns =
⌈
N
f

⌉
.

x
y

M-2
M-1

M-2M-1

M

Fig. 6. Graph partitioning and allocation of GraphS accelerator.

IV. PERFORMANCE EVALUATIONS

In this section, we compare GraphS with other possible
graph processing acceleration solutions based on DRAM,
HMC, ReRAM, STT-MRAM and GPU. We configure the
GraphS’s memory sub-array with 512 rows and 256 columns,
4×4 mats (with 1/1 as row/column activation) per bank or-
ganized in H-tree routing manner, 16×16 banks (with 1/1
as row/column activation) and 512Mb total capacity. While
the computation is mainly performed on 256×256-bit sub-
arrays, 256 rows are considered as reserved rows. It is obvious
that enlarging the chip area brings a higher performance for
GraphS and other PIM designs due to the increased number of
computational sub-arrays, though the die size directly impacts
the chip cost. Therefore, an identical physical memory size
(512Mb) is considered for all implementations henceforth.

To evaluate the performance of accelerators, we take three
social network data-sets as tabulated in Table III. Then, we
map and run 3 graph processing tasks i.e. degree centrality,
matching index and Breadth First Search (BFS) on them that
seek most of GraphS’s operations.

TABLE III. SOCIAL NETWORK DATA-SETS.

Dataset Nodes Edges Graph Information

ego-Facebook 4,039 88,234 profiles & friends lists from Facebook [17]

dblp-2010 326,186 1,615,400 scientific collaboration network

amazon-2008 735,323 5,158,388 similarity among books reported by Amazon store

A. Accelerators’ setup

GraphS: To assess the performance of GraphS as a new
PIM platform, a comprehensive device-to-architecture eval-
uation framework along with two in-house simulators are
developed. First, at the device level, we jointly use the Non-
Equilibrium Green’s Function (NEGF) and Landau-Lifshitz-
Gilbert (LLG) with spin Hall effect equations to model SOT-
MRAM bit-cell [13]. For the circuit level simulation, a Verilog-
A model of 2T1R SOT-MRAM device is developed to co-
simulate with the interface CMOS circuits in Cadence Spectre
and SPICE. 45nm North Carolina State University (NCSU)
Product Development Kit (PDK) library [18] is used in SPICE
to verify the proposed design and acquire the performance.
Second, an architectural-level simulator is built based on
NVSim [19]. Based on the device/circuit level results, our
simulator can alter the configuration files (.cfg) corresponding
to different array organization and report performance metrics
for PIM operations. The controllers and add-on circuits are
synthesized by Design Compiler [20] with an industry library.
Third, a behavioral-level simulator is developed in Matlab
calculating the latency and energy that GraphS spends on
different graph processing tasks. In addition, it has a mapping
optimization framework to maximize the performance accord-
ing to the available resources. STT-MRAM: We developed
a Pinatubo-like [5] accelerator by modifying memory sense
amplifiers. Pinatubo is implemented by standard STT-MRAM
cell (.cell file in NVSim [19]). ReRAM: An MPIM-like [6]
accelerator with 256 sub-arrays and one buffer sub-array per
bank were considered for evaluation. In the computational sub-
arrays, for each mat, there are 256×256 ReRAM cells. For
evaluation, NVSim simulator [19] was extensively modified to
work with Design Compiler [20] to emulate MPIM function-
ality. Note that the default NVSim’s ReRAM cell file (.cell)
was adopted for the assessment. DRAM: We developed an
Ambit-like [4] accelerator for graph processing. Ambit imple-
ments logic function using capacitor-based majority functions.
We accordingly modified CACTI-3DD [21] for evaluation of

BFSMatching
Index

Degree

Fig. 7. Normalized log-scaled energy consumption of different accelerators.

DRAM’s solution. The controllers were synthesized in Design
Compiler [20]. GPU: We used the NVIDIA GTX 1080Ti
Pascal GPU. It has 3584 CUDA cores running at 1.5GHz
(11TFLOPs peak performance). The energy consumption was
measured with NVIDIA’s system management interface. We
scaled the achieved results by 50% to exclude the energy
consumed by cooling, etc. Baseline HMC: We used a con-
ventional architecture presented in [11] using HMC as main
memory without utilizing instruction offloading functionality.

B. Overall performance improvement

Fig. 7 shows the normalized energy consumption of under-
test accelerators (except GPU and HMC) on various graph
processing tasks. As shown, GraphS offers the highest energy-
efficiency compared to others owning to its low-energy and
fully-parallel operations. We observe that GraphS achieves
on average 4× higher energy-efficiency than that of Ambit
accelerator. The main reason here is the energy-efficiency
of basic operations in GraphS; as discussed earlier, GraphS
can finish the operations (such as IML21) in one-single
cycle, however similar operation in Ambit imposes multi-
cycle operations avoiding destructive data-overwritten. Fig.
7 shows that GraphS solution saves 1.7× and 3.6× energy
compared to that of Pinatubo and MPIM solutions. It is worth
pointing out that Ambit [4], Pinatubo [5] and MPIM [6]
are not capable of implementing parallel one-cycle addition
in memory required for different tasks and therefore impose
excessive delay and energy consumption to memory chip. To
realize such operation in Ambit platform, we consider multi-
cycle MG-based implementation [7]. Meanwhile, Pinatubo
and MPIM uses multi-cycle XOR logic due to their XOR-
friendly architecture. Furthermore, GraphS doesn’t follow the
conventional ReRAM-based crossbar designs to realize PIM,
which brings significant energy-efficiency due to eliminating
DAC/ADC units. Note that, MPIM and Pinatubo-PCM (not-
implemented here) platforms support multi-row operations (up
to 256 rows) which can be useful in specific vector processing
tasks, however they cannot accelerate most of graph processing
tasks which strictly need 2-row operations.

Degree

Matching
Index

BFS

Fig. 8. Normalized log-scaled execution time of different accelerators.

Fig. 8 shows the GraphS and other PIMs’ execution time
on different tasks. It shows that GraphS solution is on average
5.1× faster than the DRAM solution (Ambit) and 2.5× faster
than STT-MRAM solution (Pinatubo). This is mainly because
of ultra-fast and parallel in-memory operations of GraphS
compared to multi-cycle DRAM/ STT-MRAM operations,
specifically for implementing add operation. Additionally, we
see that GraphS is 5.3× faster that ReRAM solution.

We compare the energy saving and speed-up of matching
index task running on GraphS and baseline HMC normalized
with GPU in Fig. 9a and b, respectively, on amazon-2008.
We observe that GraphS can achieve about 18.4× higher
energy-efficiency and 12.6× speed-up compared to GPU while
HMC achieves ∼5.4× and 7× improvements, respectively.
Fig. 9c gives a quantitative comparison of the state-of-the-art
accelerators in energy-efficiency and latency. It can be seen
that even though the GPU-based computation can parallelize
multiple computations as well, it shows the lowest performance
compared to PIM techniques due to memory overhead. Here,
Pinatubo implementations (STT-MRAM and ReRAM) show
the closest performance to GraphS.

[5]**

[5]*

GraphS

GPU

[4]

[6]

[11]

(a) (b) (c)

Fig. 9. (a) Energy saving and (b) Speed-up of GraphS and baseline HMC
normalized to GPU, (c) Latency vs. energy efficiency of different accelerators
compared to GPU for matching index operation on amazon-2008 data-set.
(*Pinatubo-STT-MRAM **Pinatubo-ReRAM)

C. Memory bottleneck
Fig. 10a depicts the memory bottleneck ratio i.e. the time

fraction at which the computation has to wait for data and on-
/off-chip data transfer obstructs its performance (memory wall
happens) running matching index task on two data-sets. The
evaluation is performed according to the peak performance and
experimentally extracted results for each platform considering
number of memory access in each data-set. We observe that
GraphS along with other PIM solutions (except MPIM) spend
less than ∼ 25% time for memory access and data transfer. Due
to unbalanced computation and data movement of MPIM and
limitation in number of activated sub-arrays, it shows higher
ratio compared to other PIMs. However, GPU accelerator
spends more than 90% time waiting for the loading data.
The less memory wall ratio can be interpreted as the higher
resource utilization ratio for the accelerators which is plotted
in Fig. 10b. We observe that GraphS can efficiently utilize up
to 70% of its computation resources. Overall, PIM solutions
can demonstrate high ratio (more than 45% which reconfirms
the results reported in Fig. 10a.

V. CONCLUSION

In this paper, we presented GraphS accelerator, which
transforms current SOT-MRAM sub-arrays to massively paral-
lel computational units to reduce energy consumption dealing
with graph processing tasks and eliminate unnecessary off-chip
accesses. The simulation results on three social network data-
sets show GraphS can roughly achieve 3.6× higher energy-
efficiency and 5.3× speed-up over recent ReRAM crossbar and

(a) (b)
Fig. 10. (a) The memory bottleneck ratio and (b) resource utilization ratio.

4× higher energy-efficiency and 5.1× speed-up over recent
processing-in-DRAM acceleration methods.

ACKNOWLEDGEMENTS

This work is supported in part by the National Science Foundation
under Grant No. 1740126, No. 1755761, and Semiconductor Research
Corporation nCORE.

REFERENCES

[1] G. Dai et al., “Graphh: A processing-in-memory architecture for large-
scale graph processing,” IEEE TCAD, 2018.

[2] L. Song et al., “Graphr: Accelerating graph processing using reram,”
in HPCA. IEEE, 2018, pp. 531–543.

[3] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,”
in Micro. ACM, 2017, pp. 288–301.

[4] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in Micro. ACM, 2017,
pp. 273–287.

[5] S. Li, C. Xu et al., “Pinatubo: A processing-in-memory architecture for
bulk bitwise operations in emerging non-volatile memories,” in DAC.
IEEE, 2016.

[6] M. Imani et al., “Mpim: Multi-purpose in-memory processing using
configurable resistive memory,” in ASP-DAC. IEEE, 2017.

[7] S. Angizi, Z. He et al., “Design and evaluation of a spintronic in-
memory processing platform for non-volatile data encryption,” IEEE
TCAD, 2017.

[8] S. Aga et al., “Compute caches,” in HPCA. IEEE, 2017, pp. 481–492.

[9] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep
neural networks,” arXiv preprint arXiv:1805.03718, 2018.

[10] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” Computer Architecture News, vol. 43, 2016.

[11] L. Nai et al., “Graphpim: Enabling instruction-level pim offloading in
graph computing frameworks,” in HPCA. IEEE, 2017, pp. 457–468.

[12] B. C. Lee et al., “Architecting phase change memory as a scalable dram
alternative,” in ACM Computer Architecture News, vol. 37, 2009.

[13] S. Angizi et al., “Imce: energy-efficient bit-wise in-memory convolution
engine for deep neural network,” in Proceedings of the 23rd ASP-DAC.
IEEE Press, 2018, pp. 111–116.

[14] S.-W. Chung et al., “4gbit density stt-mram using perpendicular mtj
realized with compact cell structure,” in IEDM. IEEE, 2016.

[15] K. Navi et al., “A novel low-power full-adder cell with new technique in
designing logical gates based on static cmos inverter,” Microelectronics
Journal, vol. 40, pp. 1441–1448, 2009.

[16] (2018) Parallel thread execution isa version 6.1. [Online]. Available:
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

[17] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in Advances in neural information processing systems,
2012, pp. 539–547.

[18] (2011) Ncsu eda freepdk45. [Online]. Available: http://www.eda.ncsu.
edu/wiki/FreePDK45:Contents

[19] X. Dong et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging non-volatile memory,” in Emerging Memory
Technologies. Springer, 2014, pp. 15–50.

[20] S. D. C. P. V. . Synopsys, Inc.

[21] K. Chen et al., “Cacti-3dd: Architecture-level modeling for 3d die-
stacked dram main memory,” in DATE, 2012. IEEE, 2012, pp. 33–38.

